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Abstract12 

 
A team was created to participate in the Mars Scout 
Opportunity. Trade studies determined that an 
aircraft provided the best opportunity to complete 
the science objectives of the team. A high fidelity 
six degree of freedom flight simulation was 
required to provide credible evidence that the 
aircraft design fulfilled mission objectives and to 
support the aircraft design process by providing 
performance evaluations. The team created the 
simulation using the Langley Standard Real-Time 
Simulation in C++ (LaSRS++) application 
framework. A rapid prototyping approach was 
necessary because the team had only three months 
to both develop the aircraft simulation model and 
evaluate aircraft performance as the design and 
mission parameters matured. The design of 
LaSRS++ enabled rapid-prototyping in several 
ways. First, the framework allowed component 
models to be designed, implemented, unit-tested, 
and integrated quickly. Next, the framework 
provides a highly reusable infrastructure that 
allowed developers to maximize code reuse while 
concentrating on aircraft and mission specific 
features. Finally, the framework reduces risk by 
providing reusable components that allow 
developers to build a quality product with a 
compressed testing cycle that relies heavily on unit 
testing of new components.  

                                                 
* Aerospace Engineer, Member AIAA.  
 

Introduction 

NASA’s Mars Scout Opportunity was created to 
enlist proposals for innovative investigations that 
complement NASA’s core Mars Exploration 
Program. NASA Langley Research Center teamed 
with the Jet Propulsion Laboratory (JPL), NASA 
Goddard Research Center, Lockheed Martin 
Astronautics, Aurora Flight Sciences, Charles Stark 
Draper Laboratory, Malin Space Science Systems 
and several prominent academic researchers to 
participate in the opportunity. The team established 
science goals for the project that required a 
regional survey of Mars. Trade studies determined 
that an aircraft provided the best opportunity to 
complete the science objects of the team. This led 
the team to propose a project where an aircraft 
would be released into the atmosphere of Mars to 
perform an Aerial Regional-scale Environmental 
Survey (ARES). 

To create a credible proposal, the team needed to 
provide a detailed aircraft design and demonstrate 
that it could complete the mission objectives. As 
the design evolved, aircraft capability needed to be 
evaluated. Specifically, could the aircraft pullout 
before striking the ground after being released from 
a spacecraft? Could the aircraft fly long enough to 
meet the science objectives? Could the aircraft 
provide a stable platform that would allow 
instrumentation to make usable measurements? A 
high fidelity six degree of freedom flight 
simulation was required to provide answers to 
these questions. 
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Project Timeline 

Due to the very nature of the Mars Scout 
Announcement of Opportunity, the ARES project 
had a very short timeline. The major milestones 
were as follows: 

• September 2001 - Team members identified. 
Defined science objectives and perform trade 
studies of platforms to carry out mission. 

• December 2001 - Aircraft selected as best 
platform to meet science objectives. 

• March 2002 - Aircraft outer mold lines 
established. 

• June 1 2002 – Design Freeze 

• August 1 2002 - Proposal turned in. 

• December 2002 – Four proposal winners 
announced. 

• February 2003 – Revised aircraft outer mold 
lines defined. 

• May 1 2002 – Design Freeze 

• May 2003 – Phase A Concept Study Report 
turned in. 

• August 2003 – Winning team announced. 

It can be seen from this timeline that in both phases 
of development, the actual time available for 

simulation development and analysis was roughly 
three months.  

The Langley Standard Real-Time Simulation in 
C++ (LaSRS++) application framework was used 
to support the aircraft design process. The 
framework allowed rapid prototyping of the 
aircraft as the design and mission parameters were 
modified. 

Simulation Requirements  

The primary science objectives defined by the 
science team were intended to bridge critical scale 
and resolution measurement gaps in the Mars 
Exploration Program (Figure 1). The objectives 
required the aircraft to autonomously fly a pre-
planned aerial survey approximately 1.5 km above 
the surface of Mars in the southern highlands while 
carrying several scientific instruments (Figure 2). 

To accomplish its mission objectives the aircraft 
must be inserted into the atmosphere of Mars. An 
aircraft design was selected that allowed the 
aircraft to be folded up and fit inside the aeroshell 
of an entry vehicle. The deployment sequence is 
illustrated in Figure 3. The sequence begins with 
the spacecraft releasing the entry vehicle into the  
atmosphere. The entry vehicle then deploys its 
parachute and begins to decelerate. The heatshield 
is released after the entry vehicle has slowed 
sufficiently. Shortly thereafter, the folded aircraft is 
released from the aeroshell. As the aircraft falls 

Figure 1. ARES Science related to Mars Exploration Program 
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away from the entry vehicle, the tails and wings 
unfold and the aircraft begins its flight. Its first task 
is to arrest its descent and to pullout into horizontal 
flight. Once the pullout is complete the aircraft can 
begin its pre-planned aerial survey.  

The LaSRS++ simulation framework was selected 
to evaluate the flight of the aircraft starting from 
where the aircraft was fully deployed, i.e. free from 
the entry vehicle and unfolded. Other simulation 
tools were selected to model the aircraft/entry body 
dynamics and aircraft unfolding. The LaSRS++ 
based simulation was therefore required to 
initialize the aircraft from the outputs of the other 
simulation tools. Then the LaSRS++ based 
simulation would perform the pullout maneuver 
and then navigate following the planned flight 
profile. These requirements necessitated the 
development of two items: a Mars environment and 
an ARES aircraft model.  

LaSRS++ supports different world models and  
required little modification to add the Mars 
environment[1]. Classes were developed to model 
the Martian atmosphere, winds, and surface 
topology. These classes were implementations of 
the existing LaSRS++ design patterns for 
environmental models. The new classes were 
designed to use the data and equations found in the 
Mars-GRAM 2001 distribution and were unit-
tested against the Mars-GRAM application.  

This paper focuses on the rapid-prototyping of the 
ARES aircraft and will not go into further detail on 
the Mars model.  

The ARES aircraft model was initially constructed 
with a minimal set of components. Aerodynamic, 
propulsion, and control system components were 
leveraged from other simulation projects and 
configured to ARES specifications. Reused 
simulation components were substituted with 
ARES specific models as the ARES models 
became available. Later, each ARES model would  
be replaced with progressively more detailed 
models. This allowed performance evaluations to 
be performed as the design was maturing.  

Aircraft Systems  

The LaSRS++ simulation framework was designed 
to encourage software reuse. It provides a large 
number of generic components that developers can 
leverage when building a new simulation model. 
Figure 4 is a Unified Modeling Language (UML) 
diagram that illustrates a simplified depiction of a 
typical aircraft model in LaSRS++ [5]. In this 
diagram, the Ares class derives from the class 
Aircraft. The Ares class is a composite class that 
aggregates a number of ‘system’ classes like 
AresAeroSystem, and AresPropulsionSystem. Each 
system class contains a subsystem model. The 
system classes are examples of the mediator pattern 
[3,4]. The system classes decouple the subsystem 
models from other subsystem models and the 
composite aircraft model.  

Figure 5 is a UML diagram that provides a detailed 
look at the Ares aerodynamic components. The 
Ares class contains an AresAeroSystem which in 
turn contains an AresAero object.  The 
AresAeroSystem class provides AresAero with all 
of its inputs and instructs the class when to perform 
its aerodynamic computations. The AresAero class 
is responsible for computing the aerodynamic 
coefficients and the total aerodynamic forces and 
moments of the aircraft when its update() method 
is called. The class is not dependent upon other 
simulation models and may therefore be unit-tested 
prior to integration into the simulation framework. 
The AresAero class is broken into longitudinal and 
lateral components.  Each of these component 
classes is also unit-testable. 

Figure 2. ARES Instrumentation 
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A typical frame of computation begins with the 
aircraft gathering external inputs and then 
instructing all of its system classes to update 
themselves. Next the aircraft sums the forces and 
moments computed by the system classes and then 
integrates its states. Figure 6 demo nstrates a 
sequence diagram for the Ares aero classes.  The 
diagram shows that when the Ares aircraft requests 
the AresAeroSystem to update, AresAeroSystem 
gets state parameters from the aircraft, provides 
them to the AresAero object, and then calls its 
update method. The AresAero class then uses its 
components to compute aerodynamic coefficients 
and the total aerodynamic forces and moments 
acting on the aircraft. The aircraft then requests the 
newly computed force and moment vectors prior to 
aircraft state integration. 

Rapid Prototyping of the Aerodynamic Model 

When the first outer mold lines were established 
there was no data available with which to build an 
aerodynamic model. The only data was estimated 
design parameters established during the selection 
of the aircraft’s shape. While several computational 
tools were generating aerodynamic data, the 

simulation needed some type of aerodynamic 
model to begin performance studies of the aircraft 
in different atmospheric effects (winds, 
turbulence). With this in mind, an aerodynamic 
model from a different aircraft was used to 
simulate the ARES aircraft. A general aviation 
linearized aerodynamic model was selected, and its  
parameters were set to ARES -like properties. The 
linearized model consists of two components, a 
longitudinal model and a lateral model. Both 
models used constant aerodynamic coefficients to 
build up the total lift and drag coefficients. 
Although this was a very simple aerodynamic 
model, it allowed the aircraft to be used for initial 
mission analysis. 

As the computational tools began to produce 
results, the linearized aerodynamic models were 
refined to use the new data. Changes to the 
parameters of the linearized mo dels only required a 
few minutes and thereby allowed the modifications 
to be evaluated very quickly. Eventually one of the 
more complex tools had produced enough data to 
create an aerodynamic coefficient database. The 
longitudinal linearized model was then replaced 

Figure 3. ARES Deployment Sequence 
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with a new model using four-dimensional lookups 
of the aerodynamic coefficients. Because the 
longitudinal and lateral mo dels were contained in 
the AresAero class, it was the only class modified 
to accommodate the changes. This allowed the 
simulation to use the new model within minutes of 
when the model had completed unit-testing. 
Shortly thereafter, the linerized lateral aerodynamic 
model was also replaced with a model using two-
dimensional lookups. 

As more data became available, the longitudinal 
and lateral models were continually updated. Many 
different aerodynamic databases were evaluated to 
study the effects of different types of control 
surfaces, the placement and sizes of control 
surfaces, the use of a drogue chute during pullout, 
and other aircraft design options. By the end of the 
first proposal the integration process only needed 
thirty minutes to take a new set of aerodynamic 
data tables, integrate the new data into the aero 
classes, unit-test, and begin evaluation of the 
aircraft’s performance with the modifications.   

Rapid Prototyping of Flight Control System 

The flight control system began in much the same 
way as the aero system. Initially the control system 
was leveraged from the general aviation project for 
two reasons. First, the control laws were very 
simple and allowed for easy modification. 
Secondly, the laws matched the initial aerodynamic 
database and provided a stable platform. As the 
aerodynamic parameters were modified to reflect 
ARES performance, the gains of the control laws 
were tweaked to maintain a stable aircraft.  

A high level view of the control system can be seen 
in Figure 4. The AresFlightControlSystem is 
composed of three distinct laws, a longitudinal, a 
lateral and a directional. As the project controls 
group created control laws for the ARES aircraft, 
the general aviation laws were replaced. The 
longitudinal law was designed as an angle-of-
attack command system, and the lateral law was 
designed as a bank angle command system. 

In order to begin detailed mission analysis, the 
aircraft needed additional navigational capability. 

Aircraft

Vehicle

PositionalModel Has a position and orientation 
in the simulation

Has attributes of 
PositionalModel and has 
accelerations

Has attributes of Vehicle and 
has aircraft parameters

Aero

TurboFan

AresAero

AresLateralLawAresLongitudinalLaw

AresDirectionalLaw

GenericTurbofan

AresAeroSystem

AresFlightControlSystem

AresSensorSystem

AresPropulsionSystem

AircraftMassProperties

AircraftLimits

AresDataRecordingSystem

FuelSystem

Ares

AresAeroSystem* aero
AresFlightControlSystem* fcs
AresPropulsion* propulsion
AircraftMassProperties* mass_properties
FuelSystem* fuel_system
AircraftLimits* limits
AresDataRecordingSystem* data_recording...

Inheritance

Aggregation

Class 

Unidirectional
Association 

Legend 

Figure 4. ARES Components 
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With that in mind, two autopilot modes were 
leveraged from the GenericTransport aircraft 
project. An altitude-hold mode was incorporated 
into the flight control system to allow the aircraft to 
maintain a constant altitude above the terrain. 
While the original altitude hold code was based on 
an Nz(vertical acceleration) command control 
system, it was easily modified to work with an 
angle-of-attack command system. Most of the 
changes involved setting the gains of the altitude-
hold mode to work well with the Ares aircraft.  

A track hold mode was also incorporated into the 
flight control system. This mode allowed the 
aircraft to follow a pre-determined path via a 
sequence of heading commands. The incorporation 
of the two autopilot modes allowed mission 

profiles to be analyzed for both different aircraft 
configurations and environmental conditions.  

In the second phase of the proposal a second 
longitudinal law was implemented using an Nz 
command system. The flight control system was 
modified to be able to switch between the two 
control laws. The new law was created to evaluate 
the performance of the aircraft under a different 
control algorithm. 

Rapi d Prototyping of Other Models  

Several other components were required to 
simulate ARES. The propulsion system initially 
used a GenericTurboFan object to model a simple 
linear thruster with lag. Initially the thruster could 
be throttled to allow the aircraft to be placed in a 

Aero

virtual void update()
virtual void initialize()
Vector<double>& getForces()
Vector<double>& getMoments()
double getClift()
double  getCdrag()
double  getCxTotal()
double  getCyTotal()
double  getCzTotal()
double  getCltotal()
double  getCmtotal()
double  getCnTotal()
void putForces(Vector<double>&)
void putMoments(Vector<double>&)
void putClift(double)
void putCdrag(double)
void putCxTotal(double)
void putCyTotal(double)
void putCzTotal(double)
void putClTotal(double)
void putCmTotal(double)
void putCnTotal(double)

AeroSystem

virtual void update()
virtual void initialize()
Vector<double>& getForces()
Vector<double>& getMoments()
double getClift()
double  getCdrag()
double  getCxTotal()
double  getCyTotal()
double  getCzTotal()
double  getCltotal()
double  getCmtotal()
double  getCnTotal()
void putAero(Aero* aero_model)

AresLongitudinalAero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putMach(double)
void putReynoldsPerMeter(double)
void putElevatorDegrees(double)

AresLateralAero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putBetaDegrees(double)
void putMach(double)
void putAileronDegrees(double)
void putRudderDegrees(double)

AresAero
AresLongitudinalAero* longitudinal_aero
AresLateralAero* lateral_aero

virtual void update()
virtual void initialize()
void putAlphaDegrees(double)
void putBetaDegrees(double)
void putMach(double)
void putReynoldsPerMeter(double)
void putElevatorDegrees(double)
void putAileronDegrees(double)
void putRudderDegrees(double)

Ares
AresAeroSystem* aero_system

doResetCalc()
doHoldCalc()
doOperateCalc()
propagateState()

AresAeroSystem

AresSensorSystem* sensors
AresAero* aero_model

virtual void update()
virtual void initialize()

AresSensorSystem

double getAlphaDegrees()
double getBetaDegrees()
double getMach()
double getReynoldsPerMeter()
double getElevatorDegrees()
double getAileronDegrees()
double getRudderDegrees()

Figure 5. ARES Aero Components 
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trimmed state. Autothrottle logic was incorporated 
to hold the aircraft’s speed while flying a mission 
profile. As the design of ARES progressed, a 
particular thruster was selected, and the thruster 
modeled in the simulation was modified to reflect 
its performance. The selected thruster cannot be 
throttled meaning that it is commanded either on or 
off. The autothrottle law was also modified to 
accommodate the pulsing mode of the thruster.  

The mass properties system, the fuel system, 
aircraft limits, and the sensor system were either 
reused framework components or contained 

framework components.  These systems required 
virtually no modifications other than setting the 
parameters associated with the Ares aircraft. 
Because all of these components have been heavily 
reused for many years, they required no testing 
beyond confirmation of correct initialization.  

Reuse Metrics  

A common problem associated with a rapid 
prototyping project is that there is an increased risk 
of coding errors due to developing at such a fast 
pace. Software reuse can mitigate this risk by 

Ares AresAeroSystem AresAero AresLongitudinalAero AresLateralAeroAresSensorSystem

update()

putAlphaDegrees()

putMach()

update()
putAlphaDegrees()

putMach()

update()

putAlphaDegrees()

putMach()

update()

putForces()

putMoments()

getForces()
getForces()

getMoments()
getMoments()

getAlphaDegrees()

getMach()

update()

Figure 6. ARES Aero Sequence Diagram 
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reducing the amount of code that needs to be 
tested.  

There are many different ways to categorize reuse. 
This study will use the dependency chain 
estimation method described by Madden [2]. The 
dependency chain estimation method identifies all 
of the source files that are required to build a 
simulation containing an aircraft model. The 
method provides an upper bound on the amount of 
reuse because it falsely counts some components as 
reused even though they are conditionally created. 
However, for LaSRS++ simulations the 
dependency chain method was found to be a simple 
and accurate assessment of reuse.  

Table 1 illustrates the file counts, lines of code 
(LOC), number of classes (NOC) and reuse 
statistics for the Ares aircraft at the end of each 
development phase. The two reuse metrics 
presented are the amount of reuse (AOR) metric 
and the external reuse level (ERL) metric. The 
amount of reuse value is defined as the ratio of 
LOC reused over the total LOC of the aircraft 
simulation.  

( )aircraftframework

framework

LOCLOC

LOC
AoR

+
=  

Similarly, the external reuse level is defined as the 
ratio NOC reused over the total NOC of the aircraft 
simulation. 

( )aircraftframework

framework

NOCNOC

NOC
ERL

+
=  

As the table illustrates, the Ares aircraft exhibited 
very high levels of reuse. The framework statistics 
only include reused LaSRS++ code, not code from 
other aircraft. Considering that some of the 
autopilot features found in the flight control system 
were leveraged from a different aircraft model and 
copied into Ares source code, it could be argued 
that the values might be even higher. 

Because the project was able to attain such high 
levels of reuse, team members were able to rely 
heavily on unit testing of new components. 
LaSRS++ components have been through more 
than 180 testing cycles and are considered very 
mature. The few defects found were due to 
integration errors. No defects were discovered in 
unit-testable components.  

Concluding Remarks 

The design of LaSRS++ proved to be both flexible 
and extendible. The design patterns used in the 
framework allows a developer to maximize code 
reuse while concentrating on aircraft and mission 
specific features. The high levels of re-use attained 
by this project also helped mitigate the risk 
associated with rapid prototyping. Achieving 96% 
AoR and ERL reduced the testing requirements of 
the ARES simulation without compromising 
quality. The framework also allowed for 
component mo dels to be designed, implemented, 
unit-tested, and integrated quickly, thereby 
facilitating the rapid prototyping required by this 
project. Aerodynamic data modifications were 
incorporated and tested in less than 30 minutes. As 
a result of this, the simulation was used to asses the 
capabilities of ARES as its design evolved over a 
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three month period. The final proposals included 
credible pullout, time -of-flight, range, and stability 
results generated by the simulation. The ARES 
team was selected as one of the four first round 
proposal winners and hopes to win the final round 
of the design competition. 
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